
Astrological Description Language: A Proposal
Rangarajan Krishnamoorthy

July 25, 2005
ranga@mmsindia.com

This document gives an informal description of a semi-formal language for describing
astrological concepts.

Goal:
To design a language for describing concepts, predications and rules pertaining to
astrology. The language must be reasonably simple to use without sacrificing rigour.

Entities:
There are several predefined entities in the language.
1) Planets := {Su, Mo, Ma, Me, Ju, Ve, Sa, Ra, Ke, Ch, Fo}
2) Signs:= {Ar, Ta, Ge, Cn, Le, Vi, Li, Sc, Sg, Cp, Aq, Pi}
3) Houses := {1H, 2H, 3H, 4H, 5H, 6H, 7H, 8H, 9H, 10H, 11H, 12H}
4) Cusps := {1C, 2C, 3C, 4C, 5C, 6C, 7C, 8C, 9C, 10C, 11C, 12C}

As you would have noticed, we can define a collection of entities within braces. This
collection is called a “set”.

Variables:
Sometimes we will talk about entities without knowing their actual identity. Variables are
like placeholders for “real” things. We will denote variables by meaningful names
prefixed by a question mark.
Examples: ?planet, ?cusp, ?somehouse

Functions:
Functions apply to one or more entities and return a value.

1) Sgl(?entity): This returns the signlord of the given argument. The argument can
be a planet or a cusp.

2) Stl(?entity): This returns the starlord of the given entity.
3) Sl(?entity): This returns the sublord of the given entity. Sublord can be computed

to any length. We can use the function Ssl(?entity) to compute the subsublord,
Sssl(?entity) to compute the subsubsublord, etc. Another way is to use the
function Sbl(?level, ?entity) to compute the sublord of an entity to any given
depth. In fact, Sl(?entity) == Sbl(1, ?entity).

4) House(?planet): This returns the house in which the planet is located.
5) Sgn(?entity): This returns the sign in which the cusp or planet is located.
6) Str(?entity): This returns the star in which the cusp or planet is located.
7) Degree(?entity): Returns the zodiac position in egrees of the given entity.

Boolean Functions:
The following functions return true or false.

8) IsPlanet(?p): Returns true if ?p is a planet, else returns false
9) IsCusp(?p): Returns true if ?c is a cusp, else false
10) IsHouse(?h): returns true if ?h is a house else false
11) IsSign(s): Returns true if ?s is a sign,else false
12) IsRetrograde(?p): returns true if the planet ?p is retrograde, else false
13) IsDirect(?p): returns true if the planet ?p is direct, else false.

Aspect Functions:
We have a few functions to talk about both Vedic and Western aspects.

14) VAspect(?planet1, ?planet2): Returns the vedic aspect between the two planets
?planet1 and ?planet2. For example in a particular chart if we find that Mars
aspects Mercury by 4th aspect, we will say

VAspect(Ma, Me) == 4th
15) VAspect(?planet, ?cusp): Vedic aspect between a planet and a cusp.
16) WAspect(?planet1, ?planet2): Western aspect between ?planet1 and ?planet2.

Example: WAspect(Ma, Sa) == Square

When there is no aspect between two entities, the function will return “Nil”. For example
if in a chart there is no western aspect between Mo and Ju, then the following will hold
good:
 WAspect(Mo, Ju) == Nil

Checking Set Membership:
We will find use for a function that checks whether an element is part of a given set.

17) Member(?element, ?a_set): Returns true if the element denoted by ?element is in
the set defined by ?a_set. Otherwise it will return false.

Logical Operators:
When we wish to describe conditions and rules in our language, we will require the use
of special operators that apply to Boolean expressions. These operators are ‘and’, ‘or’,
‘not’. These can also be written as ‘&&’, ‘||’ and ‘!’ respectively.

The above is just a partial list. We will keep adding to this whenever required. We will
definitely require arithmetic operators in our language. Parentheses will come to our aid
in controlling operator precedence.

Now instead of spending too much time on the language definition part, let us see how
our language can be used.

Usage Examples:
1) Let us define a new concept called “connection” between two planets.
Connected(?planet1, ?planet2) ó
 Sgl(?planet1) == ?planet2 || Stl(?planet1) == ?planet2

|| Sl(?planet1) == ?planet2
 || Sgn(?planet1) == Sgn(?planet2)
 || WAspect(?planet1, ?planet2) != Nil

The above definition states that a planet A is connected to a planet B if and only if any of
the following is true:

a) A is in the sign of B,
b) A is in the star of B,
c) A is in the sub of B,
d) A is in the same sign as B,
e) There is some western aspect between A and B.

2) Udupa’s example (in his posting): “Shukra is posited in 2nd House in Nakshatra Lord
Guru, in Sublord Budha” can be expressed thus:
 House(Ve) == 2 && Stl(Ve) == Ju && Sl(Ve) == Me

3) There is a YOD configuration in a chart when three planets have a particular aspect
relationship.
 YOD(?planet1, ?planet2, ?planet3) ó
 WAspect(?planet1, ?planet2) == Quincunx &&
 WAspect(?planet1, ?planet3) == Quincunx &&
 WAspect(?planet2, ?planet3) == Sextile

4) A native has the potential to become an astrologer when

a) The asc sublord is connected with Sa and Me, and
b) The asc sublord is connected with both 9 and 12 houses

Define Rule Astrologer :=
 Connected(Sl(1C), Sa) && Connected(Sl(1C), Me)

&& Connected(Sl(1C), 9H)
&& Connected(Sl(1C), 12H) è
 Assert(“Native has the potential to become an astrologer”)

I have not defined Connected(?planet, ?house) relationship. However, you could define
that to complete the above rule.

Conclusion: I have sketched the structure of ADL as I would like it to be. This is by no
means final or complete. Members are invited to share their comments.

*** END ***

